

Areas of interest/contributions to ANNEX 68

Marc Abadie, Patrice Blondeau, Francis Allard Associate Professor at University of La Rochelle

Kick off meeting

IEA EBC Annex 68 Design and Operational Strategies for High IAQ in Low Energy Buildings March 19 – 20, 2015

Contents

- Short presentation of LaSIE including actual research / results / key-findings
- Views on gaps of knowledge to fill. Plans for contributions to the Annex.
- Indication of subtask interest

What is LaSIE?

- LEPTAB → LEPTIAB → LaSIE: Laboratory of Engineering Sciences for the Environment
- Location: La Rochelle (France)
- Staff:
 - Professors: 18
 - Associate Professors: 30
 - PhD Students: 63
 - Post-Doctoral fellows: 18
 - Administration/technical...

What is LaSIE?

A. Flows, Energy and Environment

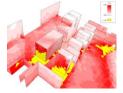
A1: Building energy and Indoor Environment Quality

B. Materials and Transfers in Aggressive Environment

B1: Transfers and material degradation and corrosion mechanisms

AB: Mathematical and numerical methods for transfer phenomena

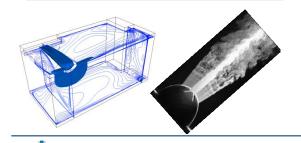
A2: Transfer Intensification for Eco-processes B2: Material protection and coatings


What is LaSIE?

A1: Building energy and Indoor Environment Quality

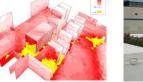
Permanent researchers: 10 ABADIE M., ALLARD F., BELARBI R., BLONDEAU P., BOZONNET E., INARD C., JOUBERT P., LIMAM K., MICHAUX G., SALAGNAC P. PhD + Post-Doctoral Students: 36

3: Urban micro-climate and Building interactions


- Heat and mass transfer in building envelope
- Urban micro-climate and Building interactions

1: AIR

- IAQ
- Indoor Airflow
- Heat and Mass Transfer • in buildings
- **Acoustics**



2: Rational use of Energy in Buildings/Systems, **Renewable Energy**

- Rational use of Energy in Buildings/Systems
- Heating/Cooling systems with low environmental impact

A1: Research Activities - Modelling

Ventilation	 Airflow and Pollutant distribution in rooms (Zonal approach) Particle deposition in duct elements Optimal ventilation strategies for low-energy buildings (IAQ/Energy)
Sources	 Modelling of pollutant transfer from the ground Characterization of material and material assemblies emissions Compilation of emission data from indoor sources
Reactivity	 Dynamic modelling of homogeneous and heterogeneous chemistry in indoor air Implementation of reactivity models in sorption/diffusion equations: secondary emission of formaldehyde by hydrolysis, chemical adsorbents in materials
Air cleaning	 Characterization of the efficiency and energy consumption of air cleaning systems (portable, in-duct) Impact of air cleaning materials (gypsum board, paint, glass fabric) on IAQ Dynamic modelling of adsorbent filter (influence of T and RH)
IAQ / Exposure	 Prioritization of indoor air pollutant: office, hospital, residential buildings Definition of IAQ indices for the assessment of optimal control strategies and systems

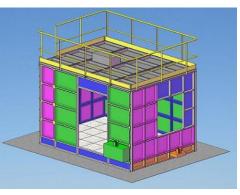
Small-scale Experiment

ng

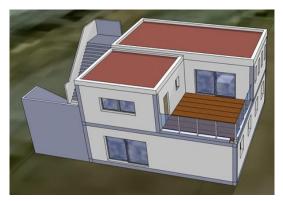
Real-scale Exp. (Lab/in situ)

A1: Research Resources

Experimental Platforms / Test beds


Material properties / emission of COV

46 liter, controlled T, RH, ACH


1 m³, T=23°C, RH=50%, ACH=0.5 /h (ISO 16000 series)

Environmental Chamber

30 m³, modular (wall materials/ventilation/T, RH)

IEQ House

110 m², modular (envelop permeability, wall materials, ventilation system, indoor sources)

Equipment:

- Proton-transfer-reaction mass spectrometry (PT-RMS)
- Optical particle counters: Met-one, GRIMM, Mini-WRAS

A1: Research Resources

Numerical tools

Building Energy Simulation programs:

• TRNSYS, Codyba, Comfie-Pléïade, EnergyPlus, Simbad

Multiphysics softwares:

• TRNSYS, Dymola (Modelica), HAM tools, INCA-INDOOR

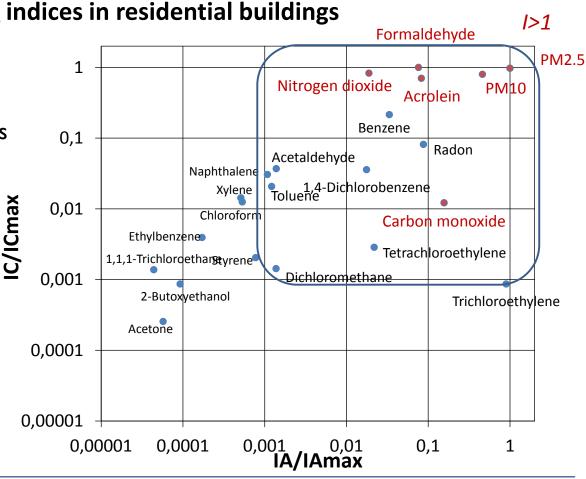
CFD software:

• StarCCM+

Database

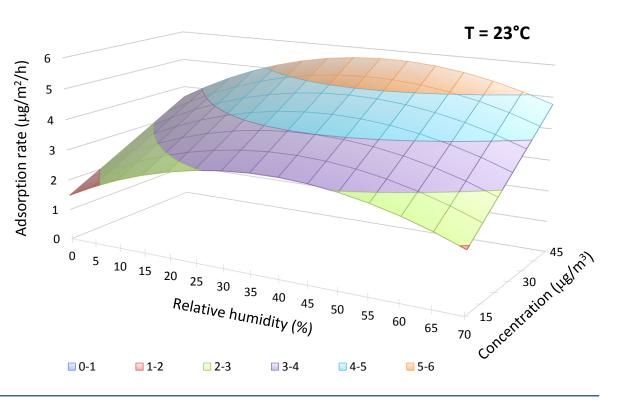
PANDORA: A comPilAtion of iNDoOR Air pollutant emissions

- Number of pollutant sources: 542
- Number of pollutant emission rates included in the database: 8171
 - Gaseous pollutants: 7980
 - Particulate Matter: 191

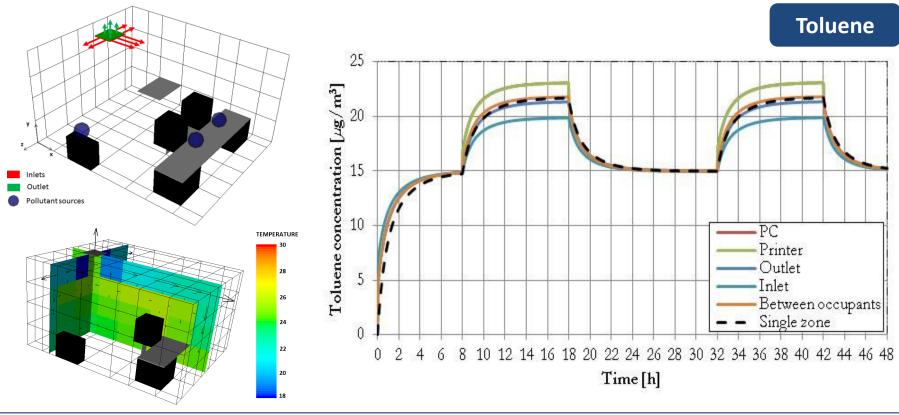


- 1. Target pollutants and IAQ indices in residential buildings
- IAQ French campaign in dwellings (OQAI, 2006)
 - ✓ 570 houses and apartments
 - + than 30 parameters
 (chemical, biological and physical)
- Definition of the Index

$$I = \frac{C_{meas.}}{C_{MRL}}$$


meas.: maximal or averaged measured MRL: acute or chronic Minimal Risk Level

2. Implementation of reactivity models in sorption/diffusion mass transfer models (hydrolysis/thermolysis, adsorptive coating materials)


- ✓ 0.2 mm thick glass fabric
- ✓ Commercially available
- ✓ 75% glass fibers and 25% organic binder containing scavengers
- Chemical adsorption of formaldehyde

3. Elemental models for airflow and gas/particle distribution in rooms and ventilation systems

AIRFLOW	Air jet cell	Standard cell	Obstacles	TRNSYS 17
POLLUTANT	Room	Organic_Pollutant	Particles Inorganic_Pollut	tant
	Ventilation System (PM)		ar Duct Rectangular Duct ang Wye Diverging Wye	Filter_01

3. Elemental models for airflow and gas/particle distribution in rooms and ventilation systems

Views on gaps of knowledge to fill

- Metrics:
 - What are the Target pollutants?
 - How to aggregate multiple indices?
- Pollutant loads in buildings
 - Outdoor air pollution data for IAQ dynamic realistic simulations?
 - Influence of T, RH, solar radiation... on the pollution loads (material emission)?
 - Prioritization of indoor sources?
 - Definition of representative schedules for occupant activities and pollutant emissions?
- Modelling:
 - Database of material properties for IAQ simulation (relevancy of data for implemented models)?
 - Couplings between gas and particle transports in indoor settings (nucleation/condensation of SVOCs, sorption of gases in particles...)?

Indication of subtask interest

- Subtask 1: Defining the metrics
- Subtask 2: Pollutant loads in buildings
- Subtask 3: Modelling
- Subtask 4: Strategies for design and operation of buildings
- (Subtask 5: Field measurements and case studies)

