

# Detailed simulation of the indoor environment as a tool to design ventilation systems in low energy houses

Maria del Carmen Bocanegra-Yanez

PhD Student, University of Strathclyde, Glasgow, UK

Annex 68 Meeting, 11<sup>th</sup> September 2017, Nottingham, UK



#### Example





IAQ problems were found in 8 newly built homes in Northern Ireland due to inadequate ventilation (McGill et al. 2015).





Methodology



Measured











Ļ





Case Study: 2-bedroom Passivhaus located in Dormont, Lockerbie (Scotland)

#### ESP-r





Emission models are limited



#### Formaldehyde emission model



The numerical model developed by Huang and Haghighat (2002) was implemented in ESP-r

• **Emission rate**,  $R(t) (\mu g/m^2 s)$ :

$$R(t) = h\left(\frac{C_m(b,t)}{k} - C_a(t)\right)$$

Material/air partition coefficient: k = f(T)(Zhang et al. 2007)

• Concentration at the material surface,  $C_m(b,t) (\mu g/m^3)$ : Initial emittable concentration:

$$\begin{pmatrix}
D_m \\
\delta y \\
\delta y \\
+ \frac{\Delta y}{\Delta t} + \frac{h}{k} - \frac{Lh^2 \Delta t}{k(N \Delta t + Lh \Delta t + 1)} \\
C_m(b, t) \\
C_m(t) \\
C_m(t)$$



#### PM deposition and resuspension model

The model used by CONTAM was implemented in ESP r:

 $R_{PM}(t) = k_d V_z \rho_{air} C_{PM}(t)$  $S_{PM}(t) = r A_r L_{PM}(t)$ 

where  $R_{PM}(t)$  is the removal rate  $(kg_{PM}/s)$ ,  $k_d$  is the deposition rate  $(s^{-1})$ ,  $V_z$  is the zone volume  $(m^3)$ ,  $\rho_{air}$  is the density of the air  $(kg/m^3)$ ,  $C_{PM}(t)$  is the PM concentration  $(kg_{PM}/kg_{air})$ ,  $S_{PM}$  is the resuspension rate  $(kg_{PM}/m^2)$ , r is the resuspension rate  $(s^{-1})$ , Ar is the resuspension surface area  $(m^2)$ ,  $L_{PM}(t)$  is the concentration of PM on the deposition surface  $(kg_{PM}/m^2)$  and t is time.

### **Questions Analysed**

- Question 1 Does an MVHR system without summer bypass lead to overheating periods? How does its impact on indoor temperature compare with a MVHR system with summer bypass?
- Question 2 What is the impact of a failure of the MVHR system? What are the peak concentrations of pollutants that could arise? How long after the fault is the acceptable IAQ threshold surpassed? Could window opening solve the IAQ issue?
- Question 3 What is the impact on IAQ of a kitchen hood? What is the energy penalty of the unbalanced ventilation system?
- Question 4 Do trickle vents with Mechanical Extract Ventilation (MEV) supply enough ventilation for good IAQ? How does its performance compare with a MVHR system?

**Question 5** - How does a constant ventilation rate compare with the use of different types of ventilation control?













#### **Scenarios**

#### **Question 5**

How does a constant ventilation rate compare with the use of different types of ventilation control?

- Scenario 5A MVHR with constant ventilation rate
- Scenario 5B MVHR with boost control based on RH
- Scenario 5C MVHR with boost control based on CO<sub>2</sub>
- Scenario 5D MVHR with boost control based on RH and indoor temperature
- Scenario 5E MVHR with boost control based on CO<sub>2</sub> and indoor temperature
- Scenario 5F MVHR with boost control based on RH and window opening based on adaptive thermal comfort
- Scenario 5G MVHR with boost control based on CO<sub>2</sub> and window opening based on adaptive thermal comfort
- All the scenarios were defined for two different situations; one assuming internal doors are open and another one assuming internal doors remain shut.
- Two different emission scenarios were considered for PM and NO<sub>2</sub> sources: a low emission rate scenario and a high emission rate one.



# **Simulation Results**

# CO2



- **Doors open**  $\rightarrow$  CO<sub>2</sub> concentrations < 1000 ppm independently of the control strategy used.
- Doors shut:
- MVHR with constant ventilation rate  $\rightarrow$  CO<sub>2</sub> conc. > 1000 ppm for 70 % of the time in the living room
- T & CO<sub>2</sub> boost control  $\rightarrow$  high CO<sub>2</sub> levels in the **living room** for **35 %** of the time.



### Formaldehyde

• Formaldehyde concentrations stay below 0.034 mg/m<sup>3</sup> (LEED v4 recommended limit) in all cases and therefore, do not present an IAQ issue for any of the scenarios simulated.

# **Simulation Results**

## **PM**<sub>10</sub>



- The WHO 24-h mean recommended concentration (50  $\mu$ g/m<sup>3</sup>) is not exceeded.
- The mean concentration ~ 22  $\mu$ g/m<sup>3</sup> > the WHO annual mean recommended level (20  $\mu$ g/m<sup>3</sup>), in the **living** room (high emission scenario)
- Doors closed:
- $PM_{10}$  24-h mean > 50 µg/m<sup>3</sup> all the time in the kitchen for the low emission scenario and also, in the living room for the high emission one.
- The T &  $RH/CO_2$  control strategy does not make a significant difference.



• An analogous situation is found.



# **Simulation Results**

## NO<sub>2</sub>



- **Doors open**  $\rightarrow$  1-h mean levels > 200 µg/m<sup>3</sup> (WHO recommended limit) for 4 % of the time in the living room and 6 % of the time in the kitchen.
- **Doors shut**  $\rightarrow$  1-h mean concentrations above the threshold 8 % of the time in the kitchen.

#### RH

- **Doors open**  $\rightarrow$  Air mainly dry in **all rooms**
- **Doors closed** → Comfortable periods for 50 % of the time in the living room and the kitchen. However the air remains dry in the bedrooms for around 80 % of the time.

#### Temperature

• Overheating is not an issue for any of the scenarios simulated in this case.

#### **Heating demand**



# Conclusions

- **Emission modelling**, taking into account prevailing **temperatures and RH**, resulted in significant variations compared to the emission rates obtained assuming constant environmental conditions, especially, temperature.
- A comprehensive database that compiles correlations between emission parameters (C<sub>0</sub>, D<sub>m</sub> and k) and indoor conditions (temperature and RH) is needed.





- **Large variations** of temperature and IAQ were found **in different rooms** within the house. Therefore, a simple one-zone model simulation could provide misleading results.
- Indoor door opening results in improved thermal comfort and IAQ.







# **Thank you!**

# maria.bocanegra-yanez@strath.ac.uk