Pollutant Loads in Residential Buildings

Menghao Qin & Jensen Zhang

Syracuse University

Technical University of Denmark

La Rochelle
 University
 TU Dresden

- Tsinghua University
- Shanghai University of
- Science and Technology
- Shenzhen IBR
- Nanjing University

IAQVEC2019 Annex 68 Forum, Bari, Italy September 2019

OBJECTIVE OF SUBTASK 2

- This subtask is to collect / provide data about properties for transport, retention and emission of chemical substances in new and recycled materials in residential buildings under the influence of heat, airflow and moisture conditions.
- Collection of results from lab tests on material and room level will be part of this study. Specifically, results
 will be collected and analysed from tests of emission of harmful compounds under various temperature,
 humidity and airflow conditions, since such data under combined exposures generally are not available for
 use today.
- Development of reliable methods and data for estimating pollutant loads in residential buildings in the way heating/cooling loads are routinely estimated.

• Effects of temperature and relative humidity on emissions

Definition of reference buildings

 Model-based testing and evaluation of VOC emissions and sorption

 Database of VOC emissions for IAQ simulations

DTU

ACTIVITIES AND ROADMAP

Li	terature s	urvey	Measu	irement tests	Moc	lel improve	ement
 Major pollutant sources from materials and assemblies in residential buildings Existing emission models and model parameters Emission standards Database 		temperat	ry test of under various ure, humidity and bined effects	emiss key in > Mass mode > Simila	 emission parameters and key influencing factors Mass transfer emission models development 		
Time schedule							
2015 2016		6 2017-2018			2019		
invo	minary	Literature surveyPreliminary studies		Measurement t	est •	Reporting Database development	

Temperature and humidity influences on the emission rate of VOCs in building materials

• Temperature and relative humidity can simultaneously change in indoor environment, which significantly affect the emission rate of formaldehyde and VOCs from building materials.

• Previous studies mainly focus on the single effect of temperature OR relative humidity, and the combined effect is not considered.

Study on the emissions of formaldehyde and VOCs from building materials can be divided into two approaches: modelling and experimental measurement.

LABORATORY TESTING

The effects of temperature, humidity and the combined effects of them on formaldehyde emissions from a mediumdensity fiberboard were analyzed.

Series No.	Temperature (°C)	RH (%)	AH (g/kg _{air})	Ventilation rate (h ⁻¹)	Dimensions (mm×mm×mm)		
	25.5±0.5	20±5	4.0±0.5	1±0.05	245×140×12		
S1	25.5±0.5	30±5	6.1±0.5	1±0.05	245×140×12	⊢ Humidity effect	
51	25.5±0.5	50±5	10.4±0.5	1±0.05	245×140×12		
	25.5±0.5	80±5	16.7±0.5	1±0.05	245×140×12		
	7.0±0.5	62.0±5	4.0±0.5	1±0.05	245×140×12		
S2	15.0±0.5	38.6±5	4.0±0.5	1±0.05	245×140×12	 Temperature effect 	
52	25.5±0.5	20.0±5	4.0±0.5	1±0.05	245×140×12		
	34.1±0.5	12.0±5	4.0±0.5	1±0.05	122×140×12		
	5.2 <u>+</u> 0.5	50.0 <u>+</u> 5	2.8 <u>+</u> 0.5	1±0.05	245×140×12		
S3	15.0 <u>+</u> 0.5	50.0 <u>+</u> 5	5.2 <u>+</u> 0.5	1 <u>+</u> 0.05	245×140×12	 Combined effect 	
33	25.5 <u>+</u> 0.5	50.0 <u>+</u> 5	10.4±0.5	1±0.05	245×140×12		
	35.0 <u>+</u> 0.5	50.0 <u>+</u> 5	17.8 <u>+</u> 0.5	1±0.05	122×140×12		

LABORATORY TESTING

S1

C ₀	D _m	K		
(mg/m³)	(m²/s)	(—)		
1.75×10 ⁶	3.40×10 ⁻¹⁴	6340		
2.00×10 ⁶	3.36×10 ⁻¹⁴	5514		
3.80×10 ⁶	3.50×10 ⁻¹⁴	5340		
5.20×10 ⁶	3.14×10 ⁻¹⁴	3128		

C ₀	D _m	К	
(mg/m ³)	(m²/s)	(—)	
$7.90 imes 10^{5}$	3.00×10 ⁻¹⁴	9467	
8.50×10^{5}	3.15×10^{-14}	7844	
1.75×10^{6}	3.40×10 ⁻¹⁴	6340	
4.30×10^{6}	3.57×10 ⁻¹⁴	4570	

S3

C ₀	D _m	К
(mg/m³)	(m²/s)	(—)
4.93×10^{5}	$2.90 imes 10^{-14}$	9752
1.14×10^{6}	3.15×10^{-14}	7280
3.80×10^{6}	3.50×10^{-14}	5340
1.10×10^{7}	3.60×10^{-14}	3450

DTU

LABORATORY TESTING

A Pre-Assessment and Control Tool for Indoor Air Quality (PACT-IAQ)

REFERENCE BUILDING

PROGRESS REPORT

HVAC SYSTEM (VRV + FRESH AIR HEAT RECOVER SYSTEM + AIR PURIFIER

REFERENCE BUILDING

Project Introduction-----Thermal Performance –Simulated by EnergyPlus

Material Setting

Envelope	Material	thickness (mm)	Conductivity (W·m ⁻¹ ·K ⁻¹)	Density (kg/m³)	Specific heat (J/kg-k)	Thermal effusivity (W/(m k))	Conductivity of structure (W·m ⁻² ·K ⁻¹)
exterior wall	Polymer cracking mortar	7	0.930	1800	1050	11.310	0.8422
	Composite foamed cement board	50	0.060	220	250	1049.6	꽃병에는 거든 것으로 들었다.
	Cement mortar	20	0.930	1800	1050	11.310	- \$\$
	Porous clay brick	200	0.639	1400	1062.3	7.92	
	Lime mortar	10	0.810	1600	1050	9.950	
floor	Cement mortar	20	0.930	1800	1050	11.310	0.6303
	Cast-in-place concrete slab	100	1.740	2400	316	17.06	
	Composite foamed cement board	90	0.060	220	1049.6	1.07	
	Polymer cracking mortar	7	0.930	1800	1050	11.310	
interior wall	Lime mortar	10	0.810	1600	1050	9.950	2.9614
	Porous clay brick	200	0.639	1400	1062	7.920	
	Lime mortar	10	0.810	1600	1050	9.950	23:54:54:51 전(V) (***)
roof	Cement mortar	15	0.930	1800	1050	11.310	0.66
	Polyurethane waterproof coating	2	0.033	1200			
	Cement mortar	20	0.930	1800	1050	11.310	
	Composite foamed cement board	80	0.060	250	1049.6	1.07	
	Cement mortar	15	0.930	1800	1050	11.310	
	Cast-in-place concrete roof board	120	1.740	2400	316	17.060	
ground	Cement morta	20	0.930	1800	1050	11.310	0.6123
	C20 Fine stone concrete	40	1.510	2500	920	17.06	
	Composite foamed cement board	85	0.060	250	1049	1.07	
	Cement morta	20	0.930	1800	1050	11.310	
	Cast-in-place concrete slab	120	1.740	2400	316	17.06	
	Broken stone hardcore	100	1.280	2100	920	15.36	
window	Low-E glass	6	1.7	2500	840	10.69	2.25
	Air gap	12	0.023	1.29	1007	0	
	Low-E glass	6	1.7	2500	840	10.69	

FIELD TEST

PROGRESS REPORT

➢ Infiltration

DTU

PROGRESS REPORT

PROGRESS REPORT

Nature ventilation

COMMON EXERCISES

EBC	
Energy in Buildings and Communities Programme	

8th July, 2017

Annex 68 – Subtask 2

Common Exercise 1

Definition of a Reference House for Determining the Baseline IAQ and Energy Consumption Conditions

Simulation of IAQ and Energy Consumption of a Reference House or Apartment

Prepared by Zhenhai Liu, Wenhao Chen, Menghao Qin and Jensen Zhang

Objectives:

 Develop a procedure for defining a standard reference to represent a typical design and operation condition for the local climate and practice as the baseline for evaluating IAQ and energy efficiency strategies;

 Compare the baseline conditions of IAQ and Energy consumption of different countries/regions.

Scope:

Define layout and building materials of the reference house; Specify local climate conditions; Define the schedules of equipment and occupancies; Define the pollution loads; Simulate energy consumption and IAQ of reference house.

Objectives:

Scope:

and air cleaning:

abovementioned quality and skills.

18th July, 2017

8th July 2018

Annex 68 – Subtask 2

Common Exercise 3

Development of a Procedure for Estimating the Parameters of Mechanistic Emission Source Models from Chamber Testing Data

> Prepared by Zhenlei Liu¹, Andreas Nicolai², Marc Abadie³, Menghao Qin⁴, John Grunewald², Jensen Zhang¹

> > ¹BEESL Lab, Syracuse University, USA ²Dresden University of Technology, Germany ³University of La Rochelle, France ⁴Technical University of Denmark, Denmark

Contact: Mr. Zhenlei Liu <u>zliu138@syr.edu</u> Prof. Jensen Zhang <u>iszhang@syr.edu</u>

July 2017

July 2017

Annex 68 - Subtask 2

Common Exercise 2

Full-scale chamber/room scale case exercise

Prepared by KwangHoon Han, Menghao Qin and Jensen Zhang

Recent wide attention to the value and importance of IAQ requires that environmental

modeling and evaluation software can help these professionals analyze the exposure

impacts of pollutant sources, sinks, ventilation and air cleaning in given environments.

In the following three areas of application, modeling tasks will be exercised based on

actual pollution measurements collected in a full-scale chamber with sources, ventilation

engineers and students perform adequate evaluation of human exposure and risk

management for indoor environments with a cocktail of indoor pollutants. Emission

Through the current exercise, these professionals will be equipped with the

July 2018

FINAL REPORT

Final report of subtask 2:

Pollutant loads in residential buildings

Part I

1. **Introduction** (Menghao Qin and Jensen Zhang) Motivation, problem definition, objectives, scope, and a road map (overview of the thought process and the chapters to follow)

2. **Definition of reference buildings** (Zhenlei Liu and Jensen Zhang) Use the existing report as draft, reference the conference papers

3. Model-based testing and evaluation of VOC emissions and sorption (Zhenlei Liu, Andreas Nikolai, John Grunewald and Jensen Zhang) *JZ to set-up the structure and ZL to fill in the details – reference to earlier conference paper and Jing Xu's dissertation*

4. Effects of temperature and relative humidity on emissions (Weihui Liang, Menghao Qin, and Xudong Yang)

5. Database of VOC emissions for IAQ simulations (Zhenlei Liu, Andreas Nikolai, John Grunewald, Marc Abadie and Jensen Zhang)

ZL leads, provide an overview of the methodology, procedure and reference the journal paper for details, focus on the material clustering/grouping with focus on the materials used in the reference building, major VOCs of interest and the actual data of D_m , K_{ma} and C_{m0} .

6. Summary and Conclusions (Menghao Qin and Jensen Zhang)

....

Part II

1. Summary of Common Exercise 1: Case Studies for Reference Buildings (Menghao Qin and Jensen Zhang)

1.1 Syracuse (Jensen Zhang)
1.2 France (Marc Abadie)
1.3 Shanghai (Chuanjuan Sun)
1.4 Denmark (Jakub Kolarik)
1.5 UK (Esfund Burman)
1.7 Belgium (Jelle Laverge)
1.8 Estonia (Ülar Palmiste)
1.9 Canada (Fitsum Tariku)

2. Summary of common exercise 2: Full-scale chamber/room scale case exercise (Menghao Qin and Jensen Zhang)

3. Summary of common exercise 3: Development of a Procedure for Estimating the Parameters of Mechanistic Emission Source Models from Chamber Testing Data (Zhenlei Liu, Menghao Qin and Jensen Zhang)

EXPERT MEETINGS

THANK YOU

Email: menqin@byg.dtu.dk

